
Abstract. This study presents an integrated approach to
locating and presenting the medical practitioner with salient
regions in a computed tomography (CT) scan when focusing
on the area of the liver. A number of image processing tasks
are performed in successive scans to extract areas with a
different features than that of the greater part of the organ. In
general, these areas do not always correspond to pathological
patterns, but may be the result of noise in the scanned image
or related to veins passing through the tissue. The result of
the algorithm is the original image with a mask indicating
these regions, so the attention of the medical practitioner is
drawn to them for further examination. The algorithm also
calculates a measure of confidence of the system, with
respect to the extraction of the salient region, based on the
fact that a region with a similar pattern is also located in
successive scans. This essentially represents the hypothesis
that the volume of both pathological patterns and blood
vessels, but not noise patterns, is large enough to be captured
in successive scans.

Introduction

The ever-improving capabilities of medical image acquisition
and computer vision technology are fast introducing a
number of interactive intervention applications for medical
image analysis researchers and practitioners. In this
framework, integrated approaches fuse intelligent techniques
such as fuzzy logic or evidence theory with lower level
image processing algorithms to provide tools that locate and
indicate specific patterns in medical images to surgeons; this
process must also incorporate additional requirements, i.e.
information from other sources, such as preoperative images,

and operate as closely to real-time as possible. In addition,
the registration of findings in different types of information
poses additional concerns.

In this study, we present an integrated approach to locating
salient regions in successive CT images and using the
evidence theory to associate a confidence value to any
abnormalities before alerting the practitioner. In a typical
scenario, multiple successive CT scans from a specific
patient are available and processed separately. Abnormalities
are modeled as distinct areas with a different pattern, located
in at least three consecutive scans; this heuristic is imposed
to help eliminate erroneous detection by increasing the
confidence of results with respect to the number of slices
found in an alerting area and the percentage of overlap in the
respective areas. According to the minimum uncertainty
principle, the combination of evidence from independent
sources, such as results from the processing of different
slices, reduces overall uncertainty and augments overall
confidence (1,2).

The main contribution of our approach is that the
minimum uncertainty principle and evidence theory are both
utilized when processing raw medical images. Thus, despite
starting with low resolution images and well-established
medical image processing techniques, the final result is
accompanied by remarkably high confidence due to
combining the results of processing distinct slices acquired
independently and analysing data using the Dempster-Shafer
theory (2).

Materials and methods

Images. Images were acquired with a 16-multislice CT
scanner at 120 kV, 294 mA using a B31F kernel. The field of
view was 36.9x36.9 cm with a 512x512 matrix, and the slice
thickness was 2.0 mm, with a collination of 1.5 mm.

Image segmentation. Our goal is to extract salient regions of
the liver using a hybrid segmentation algorithm. Image
segmentation algorithms are generally based on 1 of 2 basic
properties of intensity values: discontinuity and similarity. In
the first category, the approach is to partition an image based
on abrupt changes in intensity, such as edges in an image.
The principal approaches in the second category are based on
partitioning an image into regions that are similar according
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to a set of predefined criteria. Thresholding, region growing
and region splitting and merging are examples of methods in
this category.

After enhancing the contrast of the image using
morphological operators, we extract the extended minima of
the image, i.e. regions of the image that are regional minima
and whose external boundary pixels all have a value greater
than the threshold. We also extract extended maxima
following the dual procedure. Using the knowledge that
luminance is proportional to tissue density, the above-
extracted regions are of great interest for further analysis. We
utilize a watershed segmentation algorithm using the above
regions as markers (3,4). The main idea of the watershed
algorithm is that the gradient of the image is created, then
‘flooded’ starting from the local minima (catchment basins)
until reaching the watershed edges, which separate two
different basins. The output, an over-segmented image, is
further improved with a color recursive shortest spanning
tree (RSST) (5) that roughly defines the borders of the liver.
RSST belongs to the region growing segmentation
techniques and merges neighboring segments according to a
similarity criterion (which in our case is luminosity). Given
the mask of the liver and salient regions previously detected,
we allow a post-processing step to refine those regions. This
refinement also uses well-established morphological
processing techniques discussed later in this study.

This process is followed for three successive CT images.
The salient regions extracted in each image are superimposed
one over the other in order to check whether certain regions
are found in this sequence and to what degree. If this is the
case, then we can safely assume that this salient region is a
salient volume. In any other case, we assign a much smaller
degree of salience to the region or even completely dispose
of it.

Morphological processing. In this study, we utilize morpho-
logical operators to enhance the quality of input images and
refine the final results. Mathematical morphology is a theory
concerned with the processing and analysis of images,
using operator and functionals based on topological and
geometrical concepts (6). Regarding the enhancement, top-
hat and bottom-hat operators are used in order to increase the
contrast of the image. For the second case, reconstruction
opening is used to eliminate unwanted, false-detected regions
based on either their small size or position exactly at the
perimeter of the liver (we suppose those regions to be false
due to segmentation defects). Further, the closing operator
is used to close possible holes in the salient regions in a
gentle manner without smoothing their shape.

Evidence theory. We utilize the a priori knowledge that an
abnormality in most cases is not plane, but has a smaller or
bigger volume, which means that the destroyed tissue is
tracked in more than one image. The surface of the abnormality
differs in each subsequent image, and it is normal to expect
small changes as the axial analysis is high enough. In other
words, there is a good amount of useful information correlated
between successive CT images. We expect that an abnormal
region spreads in the image sequence, depending on the size
of its volume. 
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Figure 1. Input image.

Figure 2. Image after contrast enhancement.

Figure 3. Extended markers superimposed on the input image.
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Possibility theory, specifically its branch called evidence
theory, provides the mathematical tools through which we
can model and process this kind of information (1). In this
modeling, we consider each frame as a carrier of evidence
concerning the state of the examined organ. Thus, if the
texture analysis of a frame identifies a suspicious region,
then we consider the specific frame to offer evidence that
there is a problem in the organ. The confidence in this
evidence is estimated through the certainty and clarity of
image processing results, as well as through the intensity of
differences between the measured texture and that of the
healthy organ model.

Having analyzed multiple frames of the same organ is
similar to having questioned different people about the same
event: the evidence provided by these independent sources
needs to be combined in a way that also considers their initial
certainty, with some sources of evidence providing higher
certainty than others in order to reach an overall estimation.
This is done using the Dempster-Shafer formula, which is the
most established and widely used approach to combining
evidence.

Specifically in our domain, the evidence from different
frames can only be considered when it derives from consecutive
frames and identifies the candidate region of interest in
roughly the same position in each frame; otherwise, the
two pieces of evidence are not referenced in the same
volume and should not be combined. In this way, false
positives due to texture variations occurring for different
reasons, such as the detection of blood vessels, can be
avoided.

For successive images, this is integrated in our automated
analysis system as a rule that the surface of abnormal regions
should be: 1) of similar size; and 2) at the same approximate
coordinates {x,y}. This improves efficiency of the system by
eliminating incorrect classifications of abnormal regions.
Thus, the examination of successive images reduces the
risk of a false positive due to incorrect extraction of
parameters.

Minimum uncertainty principle. Despite the success of these
approaches, several problems still inhibit large-scale
automated use in robustly segmenting relevant structures in
medical images over different datasets. For example,
boundary localization algorithms are sensitive to variations in
image acquisition parameters and initial starting positions.
Since the domain in which these general-purpose algorithms
are performed is known beforehand and well-documented,
recognition systems would need to start incorporating the
necessary knowledge into higher level reasoning notions and
knowledge models. The minimum uncertainty principle
provides the framework needed to overcome this.

According to the minimum uncertainty principle, the
consideration of extra information not initially available
cannot augment the uncertainty; it can only help alleviate it.
Thus, the uncertainty contained in a process can be alleviated
in part by considering more information. Porting this to our
application domain, various well-known and established
image processing algorithms are at times applied to a slice of
the CT scans. The results are combined, while also
considering the certainty for each individual result, which
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Figure 4. Result of watershed segmentation.

Figure 5. Result of the RSST algorithm.

Figure 6. Binary mask segmentation of the liver.
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according to the minimum uncertainty principle assures us
that in all cases the overall estimation is equivalent to, if not
better than, the estimation provided by the best performing
algorithm for a specific slice. More importantly, this algorithm
might not always be the same for all slices.

Results

Among the test set of approximately 700 images, we selected
three consecutive slices at the approximate height of the
liver. Fig. 1 shows the first of the three slices, and Fig. 2
shows the same image just after contrast enhancement. Fig. 3
depicts the initial markers (colored white) for the whole
image superimposed over the input image.

Figs. 4 and 5 show the results of two segmentation
algorithms, watershed and RSST, respectively. It is evident
that the over-segmented result of the watershed is practically
useless, whereas the color-based RSST produces a more
meaningful segmentation.

Since our focus is on the liver, we can utilize a priori
knowledge of its position and size. Therefore, we can merge
the segments produced from RSST that compose the liver
and create its binary mask, as illustrated in Fig. 6.

Combining the mask of the liver with possible salient
regions extracted previously, we isolate only those inside the
boundaries of the liver. Fig. 7 indicates those regions, while the
image mask of the liver area lies in the background. Fig. 8
shows the same regions superimposed over the input image.

Figs. 1-8 depict the results prior to post-processing
refinement. Following the method explained above, we
created Fig. 9, which shows the remaining salient regions
after the reconstruction opening that eliminated false regions
(those of minute size and those at the perimeter of the liver).

Fig. 10 demonstrates the final results of our study. The
first three pictures (Fig. 10A-C) are the result of Fig. 9 after a
soft closing that fills the holes of salient regions for the three
consecutive slices. The last image (Fig. 10D) shows a
combination of the three successive masks of candidate
salient regions. Note that some of the candidate salient
regions of the first three images have been eliminated since
they failed to meet the criterion of matching respective areas
in successive slices. For example, the large region in the top
center of the two first images is not part of the final image
since it disappears in the third image.

Discussion

Initial studies in the area of computer vision-based medical
image processing were mainly focused in segmenting specific
structures and labeling them as known objects, registering
two different image datasets, and calculating parameters to
describe cardiac motion from image sequences (7). A typical
application in segmentation was to first detect contrast edges
from two-dimensional image datasets and perform edge
grouping or linking operations to come up with object
boundaries (8,9). In most cases, general purpose computer
vision algorithms are transformed to comply with the specific
requirements of medical images; as a result, issues related to
both general and object-specific segmentation are still
abundant in low-level processing concepts, typically tackled
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Figure 7. Possible salient regions inside the liver.

Figure 8. Possible salient regions inside the liver superimposed over the
input image.

Figure 9. Salient regions after refinement.
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with boundary estimation and region growing schemes.
Seminal approaches in the former problem are based on
deformable models (10), especially when transformed to
tackle specific medical imaging problems (in 3D) (3) and
gradient vectors controlling contour (in 2D) or surface
deformation (11).

Although there is no strict definition regarding texture
modeling, it is something commonly found in nature and in a
microscopic view of human beings. Human tissues have a
well-defined structure that differentiates one from another.
Various abnormalities, such as cancer cells, hematomas and
cysts, are visually separable, since these tissues have
different structures, and thus texture (12,13). In general,
image texture is proposed as a useful grouping and
quantization measure, especially in ultrasound or CT image
data (14) or echocardiograms (15). In our approach, we assume
that most human organs in a CT image are homogeneous
in texture, since each organ has a standard structure of cells
and tissue density. The above assumption, in addition to the

fact that luminance is proportional to the tissue density in
CT images (i.e. bone tissue, having more density, appears
brighter than muscle tissue), facilitates the task of
segmentation. Therefore, the boundaries of each organ are
quite distinct. 

In our approach, we extend the above-mentioned studies
by utilizing the minimum uncertainty principle and evidence
theory in order to tackle the processing of low resolution
images. This extension is necessary since the lack of detailed
information in the CT images makes it difficult to determine
texture and matching algorithms to extract precise, meaningful
information with a high degree of confidence. Introduction
of the evidence theory in essence enables our approach
to combine findings in successive slices, with the assumption
that the volume of a salient region spans more than two
of these slices. This assumption enhances the systematic
image processing steps and provides the final result with
a confidence value; as a result, the system response can
be validated both internally and by the medical practitioners.

ONCOLOGY REPORTS  15:  1071-1076,  2006 1075

Figure 10. (A) Salient regions after morphological closing that filled holes in the 1st slice. (B) Salient regions after morphological closing that filled holes in
the 2nd slice. (C) Salient regions after morphological closing that filled holes in the 3rd slice. (D) Combined salient regions after morphological closing that
filled the holes.
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